Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Photoluminescence study of self-assembly of heterojunction quantum dots(hequads)

Identifieur interne : 007314 ( Main/Repository ); précédent : 007313; suivant : 007315

Photoluminescence study of self-assembly of heterojunction quantum dots(hequads)

Auteurs : RBID : Pascal:07-0340424

Descripteurs français

English descriptors

Abstract

Recently quantum dots (QDs) have been the topic of extensive research. Unique properties arise in QDs due to a combination of the localized nature of their wavefunctions and a singularity in the associated density of states. Many strained III-V semiconductor film-substrate systems form QDs via a self-assembly process by means of a Stranski-Krastanov process. The strain relief responsible for the 3D nucleation causes a variation in the in-plane lattice constant which allows subsequent QD layers separated by thin spacer layers to be vertically stacked. Recently this concept has been extended to allow the formation of a heterojunction quantum dot (HeQuaD). In this structure an initial self-assembled QD (SAQD) is formed and then a different similarly strained material is nucleated on the initial SAQDs forming a crown on the underlying QD. This crown is also of a size appropriate to cause quantum confinement. In particular a stack of 4 layers of a HeQuaD structure of a GaSb crowned InAs SAQD on GaAs with GaAs spacer layers has been formed. The top HeQuaDs have been left uncapped to allow AFM analysis of the morphology. Photoluminescence of the HeQuaD has 3 peaks at ∼0.95eV, 1.15eV, and 1.35eV. We have measured the intensity and temperature dependence of these PL peaks.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:07-0340424

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Photoluminescence study of self-assembly of heterojunction quantum dots(hequads)</title>
<author>
<name sortKey="Eyink, Kurt G" uniqKey="Eyink K">Kurt G. Eyink</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Air Force Research Laboratory, Wright Patterson AFB</s1>
<s2>OH</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tomich, David H" uniqKey="Tomich D">David H. Tomich</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Air Force Research Laboratory, Wright Patterson AFB</s1>
<s2>OH</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Munshi, S" uniqKey="Munshi S">S. Munshi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Air Force Research Laboratory, Wright Patterson AFB</s1>
<s2>OH</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ulrich, Bruno" uniqKey="Ulrich B">Bruno Ulrich</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Bowling Green University</s1>
<s2>Bowling Green, OH</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Bowling Green University</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rice, Wally" uniqKey="Rice W">Wally Rice</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Wright State University</s1>
<s2>Dayton, OH</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Wright State University</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Grazulis, Lawrence" uniqKey="Grazulis L">Lawrence Grazulis</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>University of Dayton Research Institute</s1>
<s2>Dayton, OH</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>University of Dayton Research Institute</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shank, J M" uniqKey="Shank J">J. M. Shank</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Southwestern Ohio Council for Higher Education</s1>
<s2>Dayton, OH</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Southwestern Ohio Council for Higher Education</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mahalingam, Krishnamurthy" uniqKey="Mahalingam K">Krishnamurthy Mahalingam</name>
<affiliation wicri:level="1">
<inist:fA14 i1="06">
<s1>Universal Technology Corporation</s1>
<s2>Dayton, OH</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Universal Technology Corporation</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">07-0340424</idno>
<date when="2007">2007</date>
<idno type="stanalyst">PASCAL 07-0340424 INIST</idno>
<idno type="RBID">Pascal:07-0340424</idno>
<idno type="wicri:Area/Main/Corpus">007852</idno>
<idno type="wicri:Area/Main/Repository">007314</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0277-786X</idno>
<title level="j" type="main">Proceedings of SPIE, the International Society for Optical Engineering</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Atomic force microscopy</term>
<term>Binary compounds</term>
<term>Density of states</term>
<term>Heterojunctions</term>
<term>III-V semiconductors</term>
<term>Indium arsenides</term>
<term>Nanostructured materials</term>
<term>Optical materials</term>
<term>Photoluminescence</term>
<term>Quantum confinement</term>
<term>Quantum dots</term>
<term>Self-assembly</term>
<term>Strains</term>
<term>Temperature dependence</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Photoluminescence</term>
<term>Déformation mécanique</term>
<term>Autoassemblage</term>
<term>Microscopie force atomique</term>
<term>Densité état</term>
<term>Dépendance température</term>
<term>Point quantique</term>
<term>Composé binaire</term>
<term>Indium arséniure</term>
<term>Hétérojonction</term>
<term>Semiconducteur III-V</term>
<term>Nanomatériau</term>
<term>Matériau optique</term>
<term>InAs</term>
<term>GaAs</term>
<term>As In</term>
<term>As Ga</term>
<term>7855C</term>
<term>7867H</term>
<term>8116D</term>
<term>Confinement quantique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Recently quantum dots (QDs) have been the topic of extensive research. Unique properties arise in QDs due to a combination of the localized nature of their wavefunctions and a singularity in the associated density of states. Many strained III-V semiconductor film-substrate systems form QDs via a self-assembly process by means of a Stranski-Krastanov process. The strain relief responsible for the 3D nucleation causes a variation in the in-plane lattice constant which allows subsequent QD layers separated by thin spacer layers to be vertically stacked. Recently this concept has been extended to allow the formation of a heterojunction quantum dot (HeQuaD). In this structure an initial self-assembled QD (SAQD) is formed and then a different similarly strained material is nucleated on the initial SAQDs forming a crown on the underlying QD. This crown is also of a size appropriate to cause quantum confinement. In particular a stack of 4 layers of a HeQuaD structure of a GaSb crowned InAs SAQD on GaAs with GaAs spacer layers has been formed. The top HeQuaDs have been left uncapped to allow AFM analysis of the morphology. Photoluminescence of the HeQuaD has 3 peaks at ∼0.95eV, 1.15eV, and 1.35eV. We have measured the intensity and temperature dependence of these PL peaks.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0277-786X</s0>
</fA01>
<fA05>
<s2>6481</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Photoluminescence study of self-assembly of heterojunction quantum dots(hequads)</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Quantum dots, particles, and nanoclusters IV : 22-23 January, 2007, San Jose, California, USA</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>EYINK (Kurt G.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>TOMICH (David H.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>MUNSHI (S.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ULRICH (Bruno)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>RICE (Wally)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>GRAZULIS (Lawrence)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>SHANK (J. M.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>MAHALINGAM (Krishnamurthy)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>EYINK (Kurt Gerard)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>SZMULOWICZ (Frank)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>HUFFAKER (Diana Lynne)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Air Force Research Laboratory, Wright Patterson AFB</s1>
<s2>OH</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Bowling Green University</s1>
<s2>Bowling Green, OH</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Wright State University</s1>
<s2>Dayton, OH</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>University of Dayton Research Institute</s1>
<s2>Dayton, OH</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Southwestern Ohio Council for Higher Education</s1>
<s2>Dayton, OH</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="06">
<s1>Universal Technology Corporation</s1>
<s2>Dayton, OH</s2>
<s3>USA</s3>
<sZ>8 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>Society of photo-optical instrumentation engineers</s1>
<s3>USA</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s2>64810O.1-64810O.13</s2>
</fA20>
<fA21>
<s1>2007</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA26 i1="01">
<s0>978-0-8194-6594-8</s0>
</fA26>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21760</s2>
<s5>354000153559600140</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2007 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>13 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>07-0340424</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Proceedings of SPIE, the International Society for Optical Engineering</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Recently quantum dots (QDs) have been the topic of extensive research. Unique properties arise in QDs due to a combination of the localized nature of their wavefunctions and a singularity in the associated density of states. Many strained III-V semiconductor film-substrate systems form QDs via a self-assembly process by means of a Stranski-Krastanov process. The strain relief responsible for the 3D nucleation causes a variation in the in-plane lattice constant which allows subsequent QD layers separated by thin spacer layers to be vertically stacked. Recently this concept has been extended to allow the formation of a heterojunction quantum dot (HeQuaD). In this structure an initial self-assembled QD (SAQD) is formed and then a different similarly strained material is nucleated on the initial SAQDs forming a crown on the underlying QD. This crown is also of a size appropriate to cause quantum confinement. In particular a stack of 4 layers of a HeQuaD structure of a GaSb crowned InAs SAQD on GaAs with GaAs spacer layers has been formed. The top HeQuaDs have been left uncapped to allow AFM analysis of the morphology. Photoluminescence of the HeQuaD has 3 peaks at ∼0.95eV, 1.15eV, and 1.35eV. We have measured the intensity and temperature dependence of these PL peaks.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H55C</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70H67H</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A16D</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>03</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Déformation mécanique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Strains</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Autoassemblage</s0>
<s5>30</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Self-assembly</s0>
<s5>30</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Microscopie force atomique</s0>
<s5>31</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Atomic force microscopy</s0>
<s5>31</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Densité état</s0>
<s5>41</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Density of states</s0>
<s5>41</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Densidad estado</s0>
<s5>41</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Dépendance température</s0>
<s5>42</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Temperature dependence</s0>
<s5>42</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Point quantique</s0>
<s5>47</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Quantum dots</s0>
<s5>47</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Composé binaire</s0>
<s5>50</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Binary compounds</s0>
<s5>50</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Indium arséniure</s0>
<s2>NK</s2>
<s5>51</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>51</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Hétérojonction</s0>
<s5>61</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Heterojunctions</s0>
<s5>61</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>62</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>62</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>63</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>63</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Matériau optique</s0>
<s5>64</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Optical materials</s0>
<s5>64</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>InAs</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>GaAs</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>As In</s0>
<s4>INC</s4>
<s5>75</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>As Ga</s0>
<s4>INC</s4>
<s5>76</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>7855C</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>7867H</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>8116D</s0>
<s4>INC</s4>
<s5>85</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Confinement quantique</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Quantum confinement</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>218</s1>
</fN21>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Quantum dots, particles, and nanoclusters</s1>
<s2>4</s2>
<s3>USA</s3>
<s4>2007</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 007314 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 007314 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:07-0340424
   |texte=   Photoluminescence study of self-assembly of heterojunction quantum dots(hequads)
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024